
KRDB Research Centre

for Knowledge and Data

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

Tel: +39 04710 16000, fax: +39 04710 16009

KRDB Research Centre Technical Report:

Verification of Inconsistency-Aware

Knowledge and Action Bases

(Extended Version)

Diego Calvanese1, Evgeny Kharlamov1, Marco Montali1, Ario Santoso1,
Dmitriy Zheleznyakov1

Affiliation 1: KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano
lastname@inf.unibz.it

Corresponding Marco Montali: montali@inf.unibz.it
author

Number KRDB13-2

Date April 23, 2013

URL http://www.inf.unibz.it/krdb/

c©KRDB Research Centre. This work may not be copied or reproduced in whole or
part for any commercial purpose. Permission to copy in whole or part without payment
of fee is granted for non-profit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by
permission of the KRDB Research Centre, Free University of Bozen-Bolzano, Italy; an
acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the KRDB Research Centre.

Abstract

Description Logic Knowledge and Action Bases (KABs) have been recently introduced as
a mechanism that provides a semantically rich representation of the information on the
domain of interest in terms of a DL KB and a set of actions to change such information
over time, possibly introducing new objects. In this setting, decidability of verification
of sophisticated temporal properties over KABs, expressed in a variant of first-order
µ-calculus, has been shown. However, the established framework treats inconsistency
in a simplistic way, by rejecting inconsistent states produced through action execution.
We address this problem by showing how inconsistency handling based on the notion of
repairs can be integrated into KABs, resorting to inconsistency-tolerant semantics. In
this setting, we establish decidability and complexity of verification. We then show how
in this approach the temporal properties can be enriched with meta-level requests about
the sources of inconsistency, and we extend decidability and complexity of verification
accordingly.

Acknowledgments

The authors are supported by the EU project ACSI (FP7-ICT-257593) and Optique
(FP7-IP-318338). Kharlamov was also supported by the ERC grant Webdam, agreement
n. 226513.

Description Logic Knowledge and Action Bases (KABs) have been recently introduced
as a mechanism that provides a semantically rich representation of the information on the
domain of interest in terms of a DL KB and a set of actions to change such information
over time, possibly introducing new objects. In this setting, decidability of verification
of sophisticated temporal properties over KABs, expressed in a variant of first-order
µ-calculus, has been shown. However, the established framework treats inconsistency
in a simplistic way, by rejecting inconsistent states produced through action execution.
We address this problem by showing how inconsistency handling based on the notion of
repairs can be integrated into KABs, resorting to inconsistency-tolerant semantics. In
this setting, we establish decidability and complexity of verification.

1. Introduction

Recent work in knowledge representation and databases has addressed the problem of
dealing with the combination of knowledge, processes and data in the design of complex
enterprise systems [11, 23, 1, 8, 19]. The verification of temporal properties in this
setting represents a significant research challenge, since data and knowledge makes the
system infinite-state, and neither finite-state model checking [10] nor most of the current
techniques for infinite-state model checking [4] apply to this case.

Along this line, Knowledge and Action Bases (KABs) [1] have have been recently
introduced as a mechanism that provides a semantically rich representation of the
information on the domain of interest in terms of a Description Logic (DL) KB and a set
of actions to change such information over time, possibly introducing new objects. In
this setting, decidability of verification of sophisticated temporal properties over KABs,
expressed in a variant of first-order µ-calculus, has been shown.

However, KABs and the majority of approaches dealing with verification in this complex
setting assume a rather simple treatment of inconsistency resulting as an effect of action
execution: inconsistent states are simply rejected (see, e.g., [12, 11, 2]). In general, this
is not satisfactory, since the inconsistency may affect just a small portion of the entire
KB, and should be treated in a more careful way. Starting from this observation, in
this work we leverage on the research on instance-level evolution of knowledge bases
[24, 13, 16, 9], and, in particular, on the notion of knowledge base repair [18], in order to
make KABs inconsistency-aware. In particular, we present a novel setting that extends
KABs by assuming the availability of a repair service that is able to compute, from
an inconsistent knowledge base resulting from the execution of an action, one or more
repairs, in which the inconsistency has been removed with a “minimal” modification
to the existing knowledge. This allows us to incorporate, in the temporal verification
formalism, the possibility of quantifying over repairs. Notably, our novel setting is able
to deal with both deterministic semantics for repair, in which a single repair is computed
from an inconsistent knowledge base, and non-deterministic ones, by simultaneously
taking into account all possible repairs. We show how the techniques developed for KABs
extend to this inconsistency-aware setting, preserving both decidability and complexity
results, under the same assumptions required in KABs for decidability.

We also show how our setting is able to accommodate meta-level information about the
sources of inconsistency at the intentional level, so as to allow them to be queried when
verifying temporal properties of the system. The decidability and complexity results for
verification carry over to this extended setting as well.

The proofs of all presented theorems are contained in the appendix.

5

2. Preliminaries

2.1. DL-LiteA Knowledge Bases

For expressing knowledge bases, we use DL-LiteA [21, 5]. The syntax of concept and role
expressions in DL-LiteA is as follows

B −→ N | ∃R R −→ P | P−

where N denotes a concept name, P a role name, and P− an inverse role. A DL-LiteA
knowledge base (KB) is a pair (T,A), where: (i) A is an Abox, i.e., a finite set of ABox
membership assertions of the form N(t1) | P (t1, t2), where t1, t2 denote individuals (ii) T
is a TBox, i.e., T = Tp] Tn] Tf , with Tp a finite set of positive inclusion assertions of
the form B1 v B2, Tn a finite set of negative inclusion assertions of the form B1 v ¬B2,
and Tf a finite set of functionality assertions of the form (funct R).

We adopt the standard FOL semantics of DLs based on FOL interpretations I = (∆I , ·I)
such that cI ∈ ∆I , NI ⊆ ∆I , and P I ⊆ ∆I ×∆I . The semantics of the construct, of
TBox and ABox assertions, and the notions of satisfaction and of model are as usual.
We also say that A is T -consistent if (T,A) is satisfiable, i.e., admits at least one model,
otherwise we say A is T -inconsistent.

Queries. As usual (cf. OWL 2 QL), answers to queries are formed by terms denoting
individuals explicitly mentioned in the ABox. The domain of an ABox A, denoted by
adom(A), is the (finite) set of terms appearing in A. A union of conjunctive queries
(UCQ) q over a KB (T,A) is a FOL formula of the form

∨
1≤i≤n ∃~yi.conj i(~x, ~yi) with free

variables ~x and existentially quantified variables ~y1, . . . , ~yn. Each conj i(~x, ~yi) in q is a
conjunction of atoms of the form N(z), P (z, z′), where N and P respectively denote a
concept and a role name occurring in T , and z, z′ are constants in adom(A) or variables
in ~x or ~yi, for some i ∈ {1, . . . , n}. The (certain) answers to q over (T,A) is the set
ans (q, T,A) of substitutions σ of the free variables of q with constants in adom(A) such
that qσ evaluates to true in every model of (T,A). If q has no free variables, then it is
called boolean and its certain answers are either true or false.

We compose UCQs using ECQs, i.e., queries of the query language EQL-Lite(UCQ) [6],
which is the FOL query language whose atoms are UCQs evaluated according to the
certain answer semantics above. An ECQ over T and A is a possibly open formula of
the form

Q := [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

where q is a UCQ. The answer to Q over (T,A), is the set ans(Q,T,A) of tuples of
constants in adom(A) defined by composing the certain answers ans (q, T,A) of UCQs
q through first-order constructs, and interpreting existential variables as ranging over
adom(A).

6

Finally, we recall that DL-LiteA enjoys the FO rewritability property, which states that
for every UCQ q, ans (q, T,A) = ans (rew(q), ∅, A), where rew(q) is a UCQ computed by
the reformulation algorithm in [5]. Notice that this algorithm can be extended to ECQs
[6], and that its effect is to “compile away” the TBox.

2.2. Knowledge and Action Bases

We recall the notion of Knowledge and Action Bases (KABs), as introduced in [1]. In
the following, we make use of a countably infinite set C of constant to denote all possible
value in the system. Moreover, we also make use of a finite set F of functions that
represent service calls, and can be used to inject fresh values into the system.

A KAB is a tuple K = (T,A0,Γ,Π) where T and A0 form the knowledge base (KB), and
Γ and Π form the action base. Intuitively, the KB maintains the information of interest.
It is formed by a fixed DL-LiteA TBox T and an initial T -consistent DL-LiteA ABox
A0. A0 represents the initial state of the system and, differently from T , it evolves and
incorporates new information from the external world by executing actions Γ, according
to the sequencing established by process Π. Γ is a finite set actions. An action γ ∈ Γ
modifies the current ABox A by adding or deleting assertions, thus generating a new
ABox A′. γ is constituted by a signature and an effect specification. The action signature
is constituted by a name and a list of individual input parameters. Such parameters need
to be instantiated with individuals for the execution of the action. Given a substitution
θ for the input parameters, we denote by γθ the instantiated action with the actual
parameters coming from θ. The effect specification consists of a set {e1, . . . , en} of effects,
which take place simultaneously. An effect ei has the form [q+

i]∧Q−i A′i, where: (i) q+
i

is an UCQ, and Q−i is an arbitrary ECQ whose free variables occur all among the free
variables of q+

i ; (ii) A′i is a set of facts (over the alphabet of T) which include as terms:
individuals in A0, free variables of q+

i , and Skolem terms f(~x) having as arguments free
variables ~x of q+

i . The distinction between q+
i and Q−i is needed for technical reasons

(see Appendix E).
The process Π is a finite set of condition/action rules. A condition/action rule π ∈ Π

is an expression of the form Q 7→ γ, where γ is an action in Γ and Q is an ECQ over
T , whose free variables are exactly the parameters of γ. The rule expresses that, for
each tuple σ for which condition Q holds, the action γ with actual parameters σ can be
executed.

Example 2.2.1. K = (T,A0,Γ,Π) is a KAB defined as follows: (i) T = {C v ¬D}, (ii) A0 = {C(a)},
(iii) Γ = {γ1, γ2} with γ1() : {C(x) D(x), C(x)} and γ2(p) : {C(p) G(f(p))}, (iv) Π = {true 7→
γ1, C(y) 7→ γ2(y)}.

7

3. Verification of Standard KABs

We are interested in verifying temporal/dynamic properties over KABs. To this aim,
we fix a countably infinite set C of individual constants (also called values), which act
as standard names, and finite set of distinguished constants C0 ⊂ C. Then, we define
the execution semantics of a KAB in terms of a possibly infinite-state transition system.
More specifically, we consider transition systems of the form (C, T,Σ, s0, abox ,⇒), where:
(i) T is a TBox; (ii) Σ is a set of states; (iii) s0 ∈ Σ is the initial state; (iv) abox is
a function that, given a state s ∈ Σ, returns an ABox associated to s, which has as
individuals values of C and conforms to T ; (v)⇒ ⊆ Σ×Σ is a transition relation between
pairs of states.

The standard execution semantics for a KAB K = (T,A0,Γ,Π) is obtained starting
from A0 by nondeterministically applying every executable action with corresponding legal
parameters, and considering each possible value returned by applying the involved service
calls. Notice that this is radically different from [1], where service calls are not evaluated
when constructing the transition system. The executability of an action with fixed
parameters does not only depend on the process Π, but also on the T -consistency of the
ABox produced by the application of the action: if the resulting ABox is T -inconsistent,
the action is considered as non executable with the chosen parameters.

We consider deterministic services, i.e., services that return always the same value when
called with the same input parameters. Nondeterministic services can be seamlessly added
without affecting our technical results. To ensure that services behave deterministically,
we recast the approach in [2] to the semantic setting of KABs, keeping track, in the
states of the transition system generated by K, of all the service call results accumulated
so far. To do so, we introduce the set of (Skolem terms representing) service calls as
SC = {f(v1, . . . , vn) | f/n ∈ F and {v1, . . . , vn} ⊆ C}, and define a service call map as a
partial function m : SC→ C.

A state of the transition system generated by K is a pair 〈A,m〉, where A is an ABox
and m is a service call map. Let γ(p1, . . . , pr) : {e1, . . . , ek} be an action in Γ with
parameters p1, . . . , pr, and ei = [q+

i] ∧Q−i Ei. Let σ be a substitution for p1, . . . , pr
with values taken from C. We say that σ is legal for γ in state 〈A,m〉 if there exists
a condition-action rule Q 7→ γ in Π such that 〈p1, . . . , pr〉σ ∈ ans(Q,A). We denote
with do(T,A, γσ) the set of facts obtained by evaluating the effects of action γ with
parameters σ on ABox A, so as to progress (cf. planning [17]) the system from the current
state to the next:

do(T,A, γσ) =
⋃

[q+i]∧Q−i Ei in γ

⋃
ρ∈ans(([q+i]∧Q−i)σ,T,A)

Eiσρ

The returned set is the union of the results of applying the effects specifications in

8

γ, where the result of each effect specification [q+
i] ∧ Q−i Ei is, in turn, the set of

facts Eiσρ obtained from Eiσ grounded on all the assignments ρ that satisfy the query
[q+
i] ∧Q−i over A.
Note that do() generates facts that use values from the domain C, but also Skolem

terms, which model service calls. For any such set of facts E, we denote with calls(E)
the set of calls it contains, and with evals(T,A, γσ) the set of substitutions that replace
all service calls in do(T,A, γσ) with values in C:

evals(T,A, γσ) = {θ | θ is a total function
θ : calls(do(T,A, γσ))→ C}.

Each substitution in evals(T,A, γσ) models the simultaneous evaluation of all service
calls, returning results arbitrarily chosen from C.

Example 3.0.2. Consider our running example (Example 2.2.1). Starting from A0, the execution of
γ1 would produce A′ = {D(a), C(a)}, which is T -inconsistent. Thus, the execution of γ1 in A0 should
either be rejected or its effect should be repaired (cf. Section 4). The execution of γ2 with legal parameter
a instead produces A′′ = {G(c)} when the service call f(a) returns c. A′′ is T -consistent, and γ2(a) is
therefore executable in A0.

Given a KAB K = (T,A0,Γ,Π), we employ do() and evals() to define a transition
relation execK connecting two states through the application of an action with parameter
assignment. In particular, given an action with parameter assignment γσ, we have
〈〈A,m〉, γσ, 〈A′,m′〉〉 ∈ execK if the following holds: (i) σ is a legal parameter assignment
for γ in state 〈A,m〉, according to Π; (ii) there exists θ ∈ evals(T,A, γσ) such that θ
and m agree on the common values in their domains (so as to realize the deterministic
service semantics); (iii) A′ = do(T,A, γσ)θ; (iv) m′ = m ∪ θ (i.e., the history of issued
service calls is updated).

Standard transition system. The standard transition system ΥS
K for KAB K =

(T,A0,Γ,Π) is a (possibly infinite-state) transition system (C, T,Σ, s0, abox ,⇒) where:
(i) s0 = 〈A0, ∅〉; (ii) abox (〈A,m〉) = A; (iii) Σ and ⇒ are defined by simultaneous
induction as the smallest sets satisfying the following properties: (i) s0 ∈ Σ; (ii) if
〈A,m〉 ∈ Σ , then for all actions γ in Γ, for all substitutions σ for the parameters of γ
and for all 〈A′,m′〉 such that A′ is T -consistent and 〈〈A,m〉, γσ, 〈A′,m′〉〉 ∈ execK, we
have 〈A′,m′〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′,m′〉. We call S-KAB a KAB interpreted under the
standard execution semantics.

Example 3.0.3. Consider K of Example 2.2.1 and its standard transition system ΥS
K. As discussed in

Example 3.0.2, in state s0 = 〈A0, ∅〉 only γ2 is applicable with parameter a. Since do(T,A0, γ2(a)) =
{G(f(a))}, ΥS

K contains infinitely many successors for s0, each of the form 〈{G(x)}, {f(a) 7→ x}〉, where
x is arbitrarily substituted with a specific value picked from C.

Verification Formalism. To specify sophisticated temporal properties over KABs,
we resort to the first-order variant of µ-calculus [22, 20] defined in [1]. This variant,
here called µLEQL

A , exploits EQL to query the states, and supports a particular form
of first-order quantification across states: quantification ranges over the individuals

9

explicitly present in the current active domain, and can be arbitrarily referred to in later
states of the systems. Formally, µLEQL

A is defined as follows:

Φ := Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

where Q is a possibly open EQL query that can make use of the distinguished constants
in C0, and Z is a second order predicate variable (of arity 0). We make use of the
following abbreviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2), [−]Φ = ¬〈−〉¬Φ,
and νZ.Φ = ¬µZ.¬Φ[Z/¬Z].

The semantics of µLEQL
A formulae is defined over transition systems

〈C, T,Σ, s0, abox ,⇒〉. Since µLEQL
A contains formulae with both individual and

predicate free variables, given a transition system Υ, we introduce an individual variable
valuation v, i.e., a mapping from individual variables x to C, and a predicate variable
valuation V , i.e., a mapping from the predicate variables Z to a subset of Σ. All the
language primitives follow the standard µ-calculus semantics, apart from the two listed
below [1]:

(Q)Υ
v,V = {s ∈ Σ | ans(Qv, T, abox (s)) = true}

(∃x.Φ)Υ
v,V = {s ∈ Σ | ∃d.d ∈ adom(abox (s))

and s ∈ (Φ)Υ
v[x/d],V }

Here, Qv stands for the query obtained from Q by substituting its free variables according
to v. When Φ is a closed formula, (Φ)Υ

v,V does not depend on v or V , and we denote the

extension of Φ simply by (Φ)Υ . A closed formula Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ .
We call model checking verifying whether s0 ∈ (Φ)Υ , and we write in this case Υ |= Φ.

Decidability of verification. We are interested in studying the verification of µLEQL
A

properties over S-KABs. We can easily recast the undecidability result in [1] to the case
of S-KABs, obtaining that verification is undecidable even for the very simple temporal
reachability property µZ.(N(a) ∨ 〈−〉Z), with N atomic concept and a ∈ C.

Despite this undecidability result, we can isolate an interesting class of KABs that enjoys
verifiability of arbitrary µLEQL

A properties through finite-state abstraction. This class is
based on a semantic restriction named run-boundedness [2]. Given an S-KAB K, a run τ =
s0s1 · · · of ΥS

K is bounded if there exists a finite bound b s.t. |
⋃
s state of τ adom(abox (s))| <

b. We say that K is run-bounded if there exists a bound b s.t. every run τ in ΥS
K is

bounded by b.

Theorem 3.0.4. Verification of µLEQL
A properties over run-bounded S-KABs is decidable,

and can be reduced to finite-state model checking of propositional µ-calculus.

The crux of the proof is to show, given a run-bounded S-KAB K, how to construct
an abstract transition system ΘS

K that satisfies exactly the same µLEQL
A properties as

the original transition system ΥS
K. This is done by introducing a suitable bisimulation

relation, and defining a construction of ΘS
K based on iteratively “pruning” those branches

of ΥS
K that cannot be distinguished by µLEQL

A properties.
In fact, ΘS

K is of size exponential in the size of the initial state of the S-KAB K and
the bound b. Hence, considering the complexity of model checking of µ-calculus on
finite-state transition systems [10, 22], we obtain that verification is in ExpTime.

10

4. Repair Semantics for KABs

S-KABs are defined by taking a radical approach in the management of inconsistency:
simply reject actions that lead to T -inconsistent ABoxes. However, an inconsistency
could be caused by a small portion of the ABox, making it desirable to handle the
inconsistency by allowing the action execution, and taking care of repairing the resulting
state so as to restore consistency while minimizing the information loss. To this aim, we
revise the standard semantics for KABs so as to manage inconsistency, relying on the
research on instance-level evolution of knowledge bases [24, 13, 16, 9], and, in particular,
on the notion of ABox repair, cf. [3, 18].

In particular, we assume that in this case the system is equipped with a repair service
that is executed every time an action changes the content of the ABox. In this light, a
progression step of the KAB is constituted by two sub-steps: an action step, where an
executable action with parameters is chosen and applied over the current ABox, followed
by a repair step, where the repair service checks whether the resulting state is T -consistent
or not, and, in the negative case, fixes the content of the ABox resulting from the action
step, by applying its repair strategy.

Repairing ABoxes. We illustrate our approach by considering two specific forms of
repair that have been proposed in the literature [13] and are applicable to the context of
DL ontologies [18].
• Given an ABox A and a TBox T , a bold-repair (b-repair) of A with T is a maximal
T -consistent subset A′ of A. Clearly, there might be more than one bold-repair for
given A and T . By rep(A, T) we denote the set of all b-repairs of A with T .
• A certain-repair (c-repair) of A with T is the ABox defined as follows: A′ =
∩A′′∈rep(A,T)A

′′. That is, a c-repair of A with T contains only those ABox statements
that occur in every b-repair of A with T .

In general, there are (exponentially) many b-repairs of an ABox A with T , while by
definition there is a single c-repair.

Example 4.0.5. Continuing Example 3.0.2, consider the T -inconsistent state 〈A′, ∅〉 obtained from
γ1() in A0. Its two b-repairs are rep(A′, T) = {A1, A2} with A1 = {C(a)}, A2 = {D(a)}. Its c-repair is⋂

A∈rep(A′,T)A = {C(a)} ∩ {D(a)} = ∅.

4.1. Bold and Certain Repair Transition Systems

We now refine the execution semantics of KABs by constructing a two-layered transition
system that reflects the alternation between the action and the repair steps. In particular,
we consider the two cases for which the repair strategy either follows the bold or certain
semantics. We observe that, if b-repair semantics is applied, then the repair service has,

11

in general, several possibilities to fix an inconsistent ABox. Since, a-priori, no information
about the repair service can be assumed beside the repair strategy itself, the transition
system capturing this execution semantics must consider the progression of the system
for any computable repair, modelling the repair step as the result of a non-deterministic
choice taken by the repair service when deciding which among the possible repairs will
be the actually enforced one. This issue does not occur with c-repair semantics, because
its repair strategy is deterministic.

In order to distinguish whether a state is obtained from an action or repair step, we
introduce a special marker State(temp), which is an ABox statement with a fresh concept
name State and a fresh constant temp, s.t.: if State(temp) is in the current state, this
means that the state has been produced by an action step, otherwise by the repair step.

Formally, the b-transition system Υb
K (resp. c-transition system Υc

K) for a KAB
K = (T,A0,Γ,Π) is a (possibly infinite-state) transition system (C, T,Σ, s0, abox ,⇒)
where:
(1) s0 = 〈A0, ∅〉;
(2) Σ and ⇒ are defined by simultaneous induction as the smallest sets satisfying the

following properties:
(i) s0 ∈ Σ;
(ii) (action step) if 〈A,m〉 ∈ Σ and State(temp) 6∈ A, then for all actions γ

in Γ, for all substitutions σ for the parameters of γ and for all 〈A′,m′〉
s.t. 〈〈A,m〉, γσ, 〈A′,m′〉〉 ∈ execK, let A′′ = A′ ∪ {State(temp)}, and then
〈A′′,m′〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′′,m′〉;

(iii) (repair step) if 〈A,m〉 ∈ Σ and State(temp) ∈ A, then for b-repair A′ (resp. c-
repair A′) of A − {State(temp)} with T , we have 〈A′,m〉 ∈ Σ and 〈A,m〉 ⇒
〈A′,m〉.

We refer to KABs with b-transition (resp. c-transition) system semantics as b-KAB
(resp. c-KAB).

Example 4.1.1. Under b-repair semantics, the KAB in our running example looks as follows. Since
A′ is T -inconsistent, we have two bold repairs, A1 and A2, which in turn give rise to two runs: 〈A0, ∅〉 ⇒
〈A′r, ∅〉 ⇒ 〈A1, ∅〉 and 〈A0, ∅〉 ⇒ 〈A′r, ∅〉 ⇒ 〈A2, ∅〉, where A′r = {A′ ∪ {State(temp)}. Since instead γ1
does not lead to any inconsistency, for every candidate successor A′′ = {G(x)} with m = {(f(a) 7→ x)}
(see Example 3.0.3), we have 〈A0, ∅〉 ⇒ 〈A′′ ∪ {State(temp)},m〉 ⇒ 〈A′′,m〉, reflecting that in this case
the repair service just maintains the resulting ABox unaltered.

4.2. Verification Under Repair Semantics

We observe that the alternation between an action and a repair step makes EQL queries
meaningless for the intermediate states produced as a result of action steps, because the
resulting ABox could be in fact T -inconsistent (see, e.g., state 〈A′r, ∅〉 in Example 4.1.1).
In fact, such intermediate states are needed just to capture the dynamic structure that
reflects the behaviour of the system. E.g., state 〈A′r, ∅〉 in Example 4.1.1 has two successor
states, attesting that the repair service with bold semantics will produce one between
two possible repairs.

12

In this light, we introduce the inconsistency-tolerant temporal logic µLIT
A , which is a

fragment of µLEQL
A defined as:

Φ := Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉[−]Φ | [−][−]Φ | Z | µZ.Φ

Beside the standard abbreviations introduced for µLEQL
A , we also make use of the

following: 〈−〉〈−〉Φ = ¬[−][−]¬Φ, and [−]〈−〉Φ = ¬〈−〉[−]¬Φ. This logic can be used to
express interesting properties over b- and c-KABs, exploiting different combinations of
the 〈−〉 and [−] next-state operators so as to quantify over the possible action steps and
corresponding repair steps, ensuring at the same time that only the T -consistent states
produced by the repair steps are queried. For example, µZ.(Φ ∨ 〈−〉〈−〉Z) models the
“optimistic” reachability of Φ, stating that there exists a sequence of action and repair steps,
s.t. Φ eventually holds. Conversely, µZ.(Φ ∨ 〈−〉[−]Z) models the “robust” reachability of
Φ, stating the existence of a sequence of action steps leading to Φ independently from the
behaviour of the repair service. This patterns can be nested into more complex properties
that express requirements about the acceptable progressions of the system, taking into
account data and repairs. E.g., νZ.(∀x.Stud(x) → µY.(Grad(x) ∨ 〈−〉[−]Y)) ∧ [−][−]Z
states that, for every student x encountered in any state of the system, it is possible to
“robustly” reach a state where x becomes graduated.

Since for a given ABox there exist finitely many b-repairs, and one c-repair, the
technique used to prove decidability of properties for run-bounded S-KABs can be
extended to deal with b- and c-KABs as well.

Theorem 4.2.1. Verification of µLIT
A properties over run-bounded b-KABs and c-KABs

is decidable.

The precise relationship between b-KABs and c-KABs remains to be investigated.

13

5. Extended Repair Semantic for KABs

B-KABs and c-KABs provide an inconsistency-handling semantics to KABs. However,
despite dealing with possible repairs when some action step produces a T -inconsistent
ABox, they do not explicitly track whether a repair has been actually enforced, nor do
they provide finer-grained insights about which TBox assertions were involved in the
inconsistency. We extend the repair execution semantics of so as to equip the transition
system with this additional information.

While DL-LiteA does not allow, in general, to uniquely extract from a T -inconsistent
ABox a set of individuals that are responsible for the inconsistency [7], its separability
property [7] guarantees that inconsistency arises because a single negative TBox assertion
is violated. More specifically, a T -inconsistency involves the violation of either a function-
ality assertion or negative inclusion in T . Since DL-LiteA obeys to the restriction that no
functional role can be specialized, the first case can be detected by just considering the
ABox and the functionality assertion alone. Contrariwise, the second requires also to take
into account the positive inclusion assertions (since disjointness propagates downward to
the subclasses). Thanks to the FO rewritability of ontology satisfiability in DL-LiteA
[7], check can be done by constructing a FOL boolean query that corresponds to the
considered functional or negative inclusion assertion, and that can be directly evaluated
over the ABox, considered as a database of facts.

Following [7], given a functionality assertion (funct R), we construct the query

qfunsat((funct R)) = ∃x, x1, x2.η(R, x, x1) ∧ η(R, x, x2) ∧ x1 6= x2, where η(R, x, y) =
P (x, y) if R = P , and η(R, x, y) = P (y, x) if R = P−. Given a negative con-
cept inclusion B1 v ¬B2 and a set of positive inclusions Tp, we construct the query
qnunsat(B1 v ¬B2, Tp) = rew(Tp, ∃x.γ(B1, x)∧ γ(B2, x)), where γ(B, x) = N(x) if B = N ,
γ(B, x) = P (x,) if B = ∃P , and γ(B, x) = P (, x) if B = ∃P−. Similarly, given
a negative role inclusion R1 v ¬R2, we construct the query qnunsat(R1 v ¬R2, Tp) =
rew(Tp,∃x1, x2.η(R1, x1, x2) ∧ η(R2, x1, x2)).

5.1. Extended Repair Transition System

With this machinery at hand, given a KB (T,A) we can now compute the set of TBox
assertions in T that are actually violated by A. To do so, we assume wlog that C0 contains
one distinguished constant per TBox assertion in T , and introduce a function label,
that, given a TBox assertion, returns the corresponding constant. We then define the set
viol(A, T) of constants labeling TBox assertions in T violated by A, as:

{d ∈ ∆ | ∃t ∈ Tf s.t. d = label(t) and A |= qfunsat(t)} ∪
{d ∈ ∆ | ∃t ∈ Tn s.t. d = label(t) and A |= qnunsat(t, Tp)}

14

Example 5.1.1. Consider K in Example 2.2.1, with T = {C v ¬D}, and A′ =
{D(a), C(a)} in Example 3.0.2. Assume that label(C v ¬D) = `. We have φ =
qnunsat(C v ¬D, ∅) = ∃x.C(x) ∧D(x). Since A′ |= φ, we get viol(A′, T) = {`}.

We now employ this information assuming that the repair service decorates the states it
produces with information about which TBox functional and negative inclusion assertions
have been involved in the repair. This is done with a fresh concept Viol that keeps track
of the labels of violated TBox assertions.

Formally, we define the eb-transition system Υeb
K (resp. ec-transition system Υec

K) for
KAB K = (T,A0,Γ,Π) as a (possibly infinite-state) transition system (C, T,Σ, s0, abox ,⇒)
constructed starting from Υb

K (resp. Υc
K) by refining the repair step as follows: if 〈A,m〉 ∈

Σ and State(temp) ∈ A, then for b-repair A′ (resp. c-repair A′) of A − {State(temp)}
with T , we have 〈A′v,m〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′v,m〉, where A′v = A′ ∪ {Viol(d) | d ∈
viol(A′, T)}.

5.2. Verification Under Extended Repair Semantics

Thanks to the insertion of information about violated TBox assertions in their transition
systems, eb-KABs and ec-KABs support the verification of µLIT

A properties that mix
dynamic requirements with queries over the instance-level information and over the
meta-level information related to inconsistency. Notice that such properties can indirectly
refer to specific TBox assertions, thanks to the fact that their labels belong to the set of
distinguished constants C0. Examples of formulae focused on the presence of violations
in the system are:
• νZ.(¬∃l.Viol(l)) ∧ [−][−]Z says that no state of the system is manipulated by the

repair service;
• νZ.(∀l.Viol(l)→ (µY.νW.¬Viol(l)∧ [−][−]W ∨〈−〉[−]Y)∧ [−][−]Z says that, in all states,

whenever a TBox assertion a is violated, independently from the applied repairs
there exists a run that reaches a state starting from which a will never be violated
anymore.

Since the TBox assertions are finitely many and fixed for a given KAB, the key
decidability result of Theorem 4.2.1 can be seamlessly carried over to these extended
repair semantics.

Theorem 5.2.1. Verification of µLIT
A properties over run-bounded eb-KABs and ec-KABs

is decidable.

5.3. From Standard to Extended Repair KABs

It is clear that extended repair KABs are richer than repair KABs. We now show that
eb- and ec-KABs are also richer than S-KABs, thanks to the fact that information about
the violated TBox assertions is explicitly tracked in all states resulting from a repair step.
In particular, verification of µLEQL

A properties over a KAB K under standard semantics
can be recast as a corresponding verification problem over K interpreted either under

15

extended bold or extended certain repair semantics. The intuition behind the reduction
is that a property holds over Υs

K if that property holds in the portion of the Υeb
K (or

Υec
K) where no TBox assertion is violated. The absence of violation can be checked

over T -consistent states by issuing the EQL query ¬∃x.[Viol(x)]. Technically, we define
a translation function τ that transforms an arbitrary µLEQL

A property Φ into a µLIT
A

property Φ′ = τ(Φ). The translation τ(Φ) is inductively defined by recurring over the
structure of Φ and substituting each occurrence of 〈−〉Ψ with 〈−〉〈−〉((¬∃x.Viol(x))∧τ(Ψ)),
and each occurrence of [−]Ψ with [−]〈−〉((¬∃x.Viol(x))→ τ(Ψ)). Observe that, in τ , the
choice of 〈−〉 for the nested operator can be substituted by [−], because for T -consistent
states produced by an action step, the repair step simply copy the resulting state,
generating a unique successor even in the eb-semantics.

Theorem 5.3.1. Given a KAB K and a µLEQL
A property Φ, Υs

K |= Φ iff Υeb
K |= τ(Φ) iff

Υec
K |= τ(Φ).

The correctness of this result can be directly obtained by considering the semantics
of µLEQL

A and µLIT
A , and the construction of the transition systems under the three

semantics.

16

6. Weakly Acyclic KABs

So far, all the decidability results here presented have relied on the assumption that the
considered KAB is state-bounded. As pointed out in [2], run boundedness is a semantic
condition that is undecidable to check. In [2], a sufficient, syntactic condition borrowed
from weak acyclicity in data exchange [15] has been proposed to actually check whether
the KAB under study is run bounded and, in turn, verifiable.

Intuitively, given a KAB K, this test constructs a dependency graph tracking how the
actions of K transport values from one state to the next one. To track all the actual
dependencies, every involved query is first rewritten considering the positive inclusion
assertions of the TBox. Two types of dependencies are tracked: copy of values and use of
values as parameters of a service call. K is said to be weakly acyclic if there is no cyclic
chain of dependencies of the second kind. The presence of such a cycle could produce an
infinite chain of fresh values generation through service calls.

The crux of the proof showing that weakly acyclicity ensures run boundedness is
based on the notion of positive dominant, which creates a simplified version of the
KAB that, from the execution point of view, obeys to three key properties. First, its
execution consists of a single run that closely resembles the chase of a set of tuple-
generating dependencies, which terminates under the assumption of weak acyclicity [15],
guaranteeing that the positive dominant is indeed run-bounded. Second, it considers
only the positive inclusion assertions of the TBox, therefore producing always the same
behaviour independently from which execution semantics is chosen, among the ones
discussed in this paper. Third, for every run contained in each of the transition systems
generated under the standard, bold repair, certain repair, and their extended versions,
the values accumulated along the run are “bounded” by the ones contained in the unique
run of the positive dominant. This makes it possible to directly carry run-boundedness
from the positive dominant to the original KAB, independently from which execution
semantics is considered.

Theorem 6.0.2. Given a weakly acyclic KAB K, we have that Υs
K, Υb

K, Υc
K, Υeb

K , Υec
K

are all run-bounded.

Theorem 6.0.2 shows that weak acyclicity is an effective method to check verifiability
of KABs under all inconsistency-aware semantics considered in this paper.

17

7. Conclusion

We have approached the problem of inconsistency handling in Knowledge and Action
Bases, by resorting to an approach based on ABox repairs. An orthogonal approach to
the one taken is to maintain ABoxes that are inconsistent with the TBox as states of
the transition system, and rely, both for the progression mechanism and for answering
queries used in verification, on consistent query answering [3, 18]. Notably, we are able
to show that the decidability and complexity results established for the repair-based
approaches carry over also to this setting. It remains open to investigate the relationship
between these orthogonal approaches to dealing with inconsistency in KABs.

18

Bibliography

[1] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Riccardo De Masellis,
Marco Montali, and Paolo Felli. Verification of description logic Knowledge and
Action Bases. In Proc. of the 20th Eur. Conf. on Artificial Intelligence (ECAI 2012),
pages 103–108, 2012.

[2] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin Deutsch, and
Marco Montali. Verification of relational data-centric dynamic systems with external
services. In Proc. of the 32nd ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2013), 2013.

[3] Leopoldo E. Bertossi. Consistent query answering in databases. SIGMOD Record,
35(2):68–76, 2006.

[4] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite structures.
In Handbook of Process Algebra. Elsevier Science, 2001.

[5] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodŕıguez-Muro, and Riccardo Rosati. Ontologies and
databases: The DL-Lite approach. In Sergio Tessaris and Enrico Franconi, editors,
Reasoning Web. Semantic Technologies for Informations Systems – 5th Int. Summer
School Tutorial Lectures (RW 2009), volume 5689 of Lecture Notes in Computer
Science, pages 255–356. Springer, 2009.

[6] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. EQL-Lite: Effective first-order query processing in description
logics. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007),
pages 274–279, 2007.

[7] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[8] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Marco Montali, and
Ario Santoso. Ontology-based governance of data-aware processes. In Proc. of the
6th Int. Conf. on Web Reasoning and Rule Systems (RR 2012), volume 7497 of
Lecture Notes in Computer Science, pages 25–41. Springer, 2012.

[9] Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy Zheleznyakov.
Evolution of DL-Lite knowledge bases. In Proc. of the 9th Int. Semantic Web Conf.

19

(ISWC 2010), volume 6496 of Lecture Notes in Computer Science, pages 112–128.
Springer, 2010.

[10] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. The
MIT Press, Cambridge, MA, USA, 1999.

[11] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic verification
of data-centric business processes. In Proc. of the 12th Int. Conf. on Database
Theory (ICDT 2009), pages 252–267, 2009.

[12] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-
driven web applications. J. of Computer and System Sciences, 73(3):442–474, 2007.

[13] Thomas Eiter and Georg Gottlob. On the complexity of propositional knowledge
base revision, updates and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

[14] E. Allen Emerson. Model checking and the Mu-calculus. In N. Immerman and
P. Kolaitis, editors, Proc. of the DIMACS Symposium on Descriptive Complexity
and Finite Model, pages 185–214. American Mathematical Society Press, 1997.

[15] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
Semantics and query answering. Theoretical Computer Science, 336(1):89–124, 2005.

[16] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plexousakis,
and Grigoris Antoniou. Ontology change: Classification and survey. Knowledge
Engineering Review, 23(2):117–152, 2008.

[17] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning – Theory
and Practice. Elsevier, 2004.

[18] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. Inconsistency-tolerant semantics for description logics. In
Proc. of the 4th Int. Conf. on Web Reasoning and Rule Systems (RR 2010), pages
103–117, 2010.

[19] Lior Limonad, Pieter De Leenheer, Mark Linehan, Rick Hull, and Roman Vaculin.
Ontology of dynamic entities. In Proc. of the 31st Int. Conf. on Conceptual Modeling
(ER 2012), 2012.

[20] David Michael Ritchie Park. Finiteness is Mu-ineffable. Theoretical Computer
Science, 3(2):173–181, 1976.

[21] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maur-
izio Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data Semantics,
X:133–173, 2008.

[22] Colin Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

20

[23] Victor Vianu. Automatic verification of database-driven systems: a new frontier. In
Proc. of the 12th Int. Conf. on Database Theory (ICDT 2009), pages 1–13, 2009.

[24] Marianne Winslett. Updating Logical Databases. Cambridge University Press, 1990.

21

A. Bisimulation and Invariance

We start by introducing the notion of isomorphism between ABoxes. Two ABoxes A1

and A2 are isomorphic, written A1 ≡ A2, if there exists a bijection h : S1 → S2, with
adom(A1) ∪ C0 ⊆ S1 and adom(A2) ∪ C0 ⊆ S2, which is the identity on C0, and s.t.:

1. for every concept assertion N(d) ∈ A1, N(h(d)) ∈ A2;
2. for every role assertion P (d1, d2) ∈ A1, N(h(d1), h(d2)) ∈ A2;
3. for every concept assertion N(d) ∈ A2, N(h−1(d)) ∈ A1;
4. for every role assertion P (d1, d2) ∈ A2, N(h−1(d1), h−1(d2)) ∈ A1.

We write A1 ≡h A2 to make h explicit. Furthermore, with a slight abuse of notation, we
write A2 = h(A1), and A1 = h−1(A2), when there exists a bijection h : S1 → S2, with
adom(A1) ∪ C0 ⊆ S1 and adom(A2) ∪ C0 ⊆ S2, s.t. A1 ≡h A2.

It is easy to see that isomorphism implies the following results.

Lemma A.0.3. Consider two knowledge bases (T,A1) and (T,A2), s.t. there exists a
bijection h with A2 = h(A1). For every EQL query q, we have 〈d1, . . . , dn〉 ∈ ans(q, T,A1)
iff 〈h(d1), . . . , h(dn)〉 ∈ ans(h(q), T, h(A1)).

Proof. Trivial, by recalling the notion of first-order rewritability of EQL queries, and the
fact that first-order logic cannot distinguish between isomorphic structures.

We now recast the notion of history preserving bisimulation as defined in [2] in the
context of KABs. Let Υ1 = (C1, T,Σ1, s0, abox 1,⇒1) and Υ1 = (C2, T,Σ2, s0, abox 2,⇒2)
be transition systems, with abox (s0) ⊆ C0 ⊆ C1∩C2. Let H be the set of partial bijections
between C1 and C2, which are the identity over C0. A history preserving bisimulation
between Υ1 and Υ2 is a relation B ⊆ Σ1 ×H × Σ2 such that 〈s1, h, s2〉 ∈ B implies that:

1. h is a partial bijection between C1 and C2, s.t. h fixes C0 and abox 1(s1) ≡h abox 2(s2);
2. for each s′1, if s1 ⇒1 s

′
1 then there is an s′2 with s2 ⇒2 s

′
2 and a bijection h′ that

extends h, such that 〈s′1, h′, s′2〉 ∈ B.
3. for each s′2, if s2 ⇒2 s

′
2 then there is an s′1 with s1 ⇒1 s

′
1 and a bijection h′ that

extends h, such that 〈s′1, h′, s′2〉 ∈ B.
A state s1 ∈ Σ1 is history preserving bisimilar to s2 ∈ Σ2 wrt a partial bijection h, written
s1 ≈h s2, if there exists a history preserving bisimulation B between Υ1 and Υ2 such that
〈s1, h, s2〉 ∈ B. A state s1 ∈ Σ1 is history preserving bisimilar to s2 ∈ Σ2, written s1 ≈ s2,
if there exists a partial bijection h and a history preserving bisimulation B between Υ1

and Υ2 such that 〈s1, h, s2〉 ∈ B. A transition system Υ1 is history preserving bisimilar
to Υ2, written Υ1 ≈ Υ2, if there exists a partial bijection h0 and a history preserving
bisimulation B between Υ1 and Υ2 such that 〈s01, h0, s02〉 ∈ B.

The following fundamental results connects history preserving bisimulation and the
logic µLEQL

A :

22

Theorem A.0.4. Consider two transition systems Υ1 and Υ2 such that Υ1 ≈ Υ2. For
every µLEQL

A closed formula Φ, we have: Υ1 |= Φ if and only if Υ2 |= Φ.

Proof. The proof follows from that of Theorem 3.1 in [2], noticing that, by Lemma A.0.3,
isomorphism indeed preserves certain answers.

23

B. Standard KABs

B.1. Proof of Theorem 3.0.4

In principle, decidability can be obtained by taking advantage from first-order rewritability
of DL-LiteA, and translating a KAB into a corresponding Data-Centric Dynamic System
[2]. However, in order to make the proof adaptable to the inconsistency-aware semantics
discussed in the paper, we reconstruct the proof contained in [2] over KABs. We first
discuss the intuition behind the proof, and then focus on the technical development.

Given a run-bounded S-KAB K, the crux of the proof is to show how to construct an
abstract transition system ΘS

K that satisfies exactly the same µLEQL
A properties of the

original transition system ΥS
K. To do so, a first observation is that the only source of

infiniteness in ΥS
K is the infinite branching arising when a service call is issued for the first

time. In this case, given a state s = 〈A,m〉 in ΥS
K, for every executable action with legal

parameters ασ, s contains an infinite number of successor states, each one corresponding
to an assignment of all the newly introduced service calls to values in C, s.t. the resulting
state does not violate any axiom of T .

One can see these successors as variations of a finite set of structures, each one
expressing an isomorphic type (called equality commitment) constructed over the set of
facts E = do(T,A, ασ) and the map m, by fixing the set of equalities and inequalities
between the service calls that must be issued, and the service calls and values contained
in E, m and C0. Each structure can be concretized into a successor state by evaluating
the service calls so as to satisfy the equalities and inequalities induced by the equality
commitment (this also guarantees that the evaluation agrees with m). Two concretizations
of the same structure are isomorphic, i.e., they contain the same ABox and service call
map modulo renaming of the newly introduced values.

We now observe that EQL-queries do not distinguish isomorphic ABoxes. In particular,
consider two ABoxes A1 and A2, and a bijection h that induces an isomorphism between
A1 and A2. Now consider an EQL query q s.t. the constants used in q appear in h, and
let h(q) be the query obtained by replacing such constants through the application of h.
It is easy to see that the certain answers of q over A1 are exactly the same of h(q) over
A2, modulo renaming of the values via h. The key consequence of this property is that,
given a state s of ΥS

K, µLEQL
A is not able to distinguish successors of s that concretize

E by satisfying the same equality commitment. Therefore, all such successors can be
collapsed into a unique representative successor, without affecting the satisfaction of a
closed µLEQL

A property Φ asked in the initial state of the system.
By inductively applying this pruning, we can construct a finite-state transition system

ΘS
Φ. Since the active domain of ΘS

Φ is finite, by quantifier elimination we can then trans-
form Φ into a corresponding propositional µ-calculus property φ, and reduce verification

24

of Φ over ΥS
K as standard model checking of φ over ΘS

K, which is indeed decidable [14].

Equality commitments. Given a set S ⊆ SC ∪ C containing individuals and service
calls, an equality commitment over S is a partition H of S s.t. every cell of H contains at
most one element d ∈ C. Given an element e ∈ S, we use [e]H do denote the cell e belongs
to. With a slight abuse of notation, we say that e ∈ H if e ∈ S. Now consider a KAB
K = (T,A0,Γ,Π), a state 〈A,m〉, and an action α ∈ Γ with parameters σ, s.t. ασ is legal
in 〈A,m〉 according to Π. Let H(T, 〈A,m〉, ασ) be the set of equality commitments Hi

constructed over adom(C0) ∪ adom(A) ∪ dom(m) ∪ im(m) ∪ adom(do(T,A, ασ)) that
agrees with m, i.e., for every assignment (f → d) in m, [f]Hi = [d]Hi . Intuitively, the
elements of H are equality commitments that fix the equivalence class to which every
new service call, introduced by do(T,A, ασ), belongs to.

We say that evals(T,A, ασ) respects an equality commitment H ∈ H(T, 〈A,m〉, ασ)
if, for every pair of assignments (f1 → d1), (f2 → d2) in evals(T,A, ασ), d1 = d2 iff f1

and f2 belong to the same cell P of H, and d1 = d2 = d iff d belongs to P .

Pruning. Given a KAB K = (T,A0,Γ,Π), we refine the definition of execK so as to
create a parsimonious version that minimally covers, state-by-state, the various equality
commitments.

In particular, we define a transition relation p-execK as follows. For every
〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ execK, fix θ = m′ \ m and H ∈ H(T, 〈A,m〉, ασ) s.t. θ re-
spects H. Then there exists only one θp = evals(T,A, ασ) s.t. θp respects H and, given,
Ap = do(T,A, ασ)θp and m′ = m ∪ θp, 〈〈A,m〉, ασ, 〈Ap,mp〉〉 ∈ p-execK. Intuitively,
p-execK “prunes” execK by collapsing into a unique representative tuple all transitions
that are associated to a given starting state and action with parameters, and that respect
the same equality commitment.

Starting from p-execK, we define a pruning ΘS
K of the transition system under standard

semantics ΥS
K as a transition system constructed following the standard semantics, but

by using p-execK in place of execK to inductively construct the set of states and
transitions. In general, there exist infinitely many prunings, whose difference relies in
the particular choice for the representatives when constructing p-execK. However, we
show that all such prunings are history-preserving bisimilar to the original transition
system ΘK. The following lemma is a key result in this direction, and intuitively shows
that bisimulation does not distinguish different progressions that fix, step-by-step, the
same equality commitments. In the lemma, for the sake of readability, given a service
call map m and a function h : C → C defined over all values contained in m1 (considering
both the service call parameters and their results), we write m2 = f(m1) to denote the
service call map constructed as follows: for every assignment (f(d1, . . . , dn)→ d) in m1,
we have (f(h(d1), . . . , h(dn))→ h(d)) in m2.

Lemma B.1.1. Let K be a S-KAB with transition system ΥS
K, and let ΘS

K be a pruning
of ΥS

K. Consider a state 〈A,m〉 of ΥS
K and a state 〈Ap,mp〉 of ΘS

K. If there exists
a bijection h s.t. Ap = h(A) and mp = h(m) (or, equivalently, m = h−1(mp)), then
〈A,m〉 ≈h 〈Ap,mp〉.
Proof. Let K = (T,A0,Γ,Π), ΥS

K = (C, T,Σ, s0, abox ,⇒), and ΘS
K =

(C, T,Σp, s0, abox ,⇒p). To prove the lemma, we show that, for every state 〈A′,m′〉

25

s.t. 〈A,m〉 ⇒ 〈A′,m′〉, there exists a state 〈A′p,m′p〉 and a bijection h′ s.t.: 1. 〈Ap,mp〉 ⇒p

〈A′p,m′p〉; 2. h′ extends h; 3. A′p = h′(A′); 4. m′p = h′(m′). By definition of ΥS
K , if

〈A,m〉 ⇒ 〈A′,m′〉, then there exists an action α ∈ Γ with parameters σ s.t. σ is legal in
〈A,m〉 according to Π, and θ ∈ evals(T,A, ασ) s.t. θ agrees with m, A′ = do(T,A, ασ)θ,
and m′ = m ∪ θ. From this information, we can extract the equality commitment
H ∈ H(T, 〈A,m〉, ασ) s.t. θ respects H.

Since Ap = h(A), from Lemma A.0.3 we know that the certain answers computed over
A are the same, modulo renaming through h, to those computed over Ap. Furthermore,
since σ maps parameters of α to values in adom(A), we can construct σp mapping
parameters of α to values in adom(Ap), so as (x → d) in σ implies (x → h(d)) in σp.
By hypothesis, we also know that mp = h(m). As a consequence, we have that σp is
legal in 〈Ap,mp〉 according to Π, and that H(T, 〈Ap,mp〉, ασp) contains the same equality
commitments in H(T, 〈A,m〉, ασ) up to renaming of individuals through h. Now pick
commitment Hp ∈ H(T, 〈Ap,mp〉, ασp) so that Hp corresponds to H up to renaming of
individuals through h.

By definition of pruning, we know that there exists a unique θp that respects Hp

(and, in turn, agrees with mp) s.t., given A′p = do(T,Ap, ασp)θp and m′p = mp ∪ θp, we
have 〈Ap,mp〉 ⇒p 〈A′p,m′p〉. Since Hp corresponds to H up to renaming of individuals
through h, θ respects H, and θp respects Hp, we can lift h to an extended bijection h′

s.t. θp = h(θ). By construction, this means that A′p = h′(A′), and that m′p = h′(m′),
hence the claim is proven.

The other direction can be proven in the symmetric way.

Lemma B.1.2. For every S-KAB K with transition system ΥS
K and every pruning ΘS

K
of ΥS

K, we have ΘS
K ≈ ΥS

K.

Proof. Immediate consequence of Lemma B.1.1, by noticing that the initial states of
ΥS
K and ΘS

K are the same, and can be therefore connected through the identity bijection
between their active domains.

Proof of Theorem 3.0.4. Given a run-bounded KAB K, we observe that each pruning
ΘS
K of ΥS

K is finite-state. On the one hand, thanks to run-boundedness each run consists
of a finite number of states. On the other hand, thanks to the definition of pruning, each
state has only finitely many successors. In fact, given a state of ΘS

K, there are only finitely
many equality commitments that can be created by considering all possible actions with
parameters. This implies that the entire active domain adom(ΘS

K) of ΘS
K is finite as

well. By Lemma B.1.2 and Theorem A.0.4, we know that ΘS
K is a faithful abstraction

of ΥS
K, i.e., for every µLEQL

A formula Φ, ΥS
K |= Φ iff ΘS

K |= Φ. Taking advantage from
the finiteness of adom(ΘS

K), by quantifier elimination we can construct a propositional
µ-calculus property φ s.t. ΘS

K |= Φ iff ΘS
K |= φ. The proof completes by observing

that verifying whether ΘS
K |= φ amounts to standard model checking of propositional

µ-calculus over finite-state transition systems, which is indeed decidable [14].

26

C. KABs Under Repair Semantics

We open this section by observing that the repair service does not distinguish between
isomorphic ABoxes.

Lemma C.0.3. Consider two knowledge bases (T,A1) and (T,A2), s.t. there exists
a bijection h with A2 = h(A1). Then for every ABox Ar1 s.t. Ar1 ∈ rep(A1, T), we
have h(Ar2) ∈ rep(A2, T), and for every ABox Ar2 s.t. Ar2 ∈ rep(A2, T), we have
h−1(Ar2) ∈ rep(A1, T).

Proof. Trivial, by recalling the notion of first-order rewritability of ontology satisfiability
in DL-LiteA, and the fact that first-order logic cannot distinguish between isomorphic
structures.

C.1. Proof of Theorem 4.2.1

Given a K, we introduce the pruning ΘK of the transition system under repair semantics
(denoted by Υb

K for the bold semantics, and Υc
K for the certain semantics), as the transition

system constructed following one between the two repair semantics, but by relying on the
transition relation p-execK (as defined in Section B.1) in place of execK. Differently
from the standard case, to show that ΘK ≈ Υb

K (ΘK ≈ Υc
K resp.) we have to deal with

the action and repair step. In particular, we reconstruct Lemma B.1.1 in this two-steps
setting.

Lemma C.1.1. Let K be a b-KAB (c-KAB respectively) with transition system Υb
K (Υc

K
resp.), and let ΘK be a pruning of Υb

K (Υc
K resp.). Consider a state 〈A,m〉 of Υb

K (Υc
K

resp.), and a state 〈Ap,mp〉 of ΘK. If there exists a bijection h s.t. Ap = h(A) and
mp = h(m) (or, equivalently, m = h−1(mp)), then 〈A,m〉 ≈h 〈Ap,mp〉.

Proof. Let K = (T,A0,Γ,Π), Υb
K = (C, T,Σ, s0, abox ,⇒) (resp., Υc

K =
(C, T,Σ, s0, abox ,⇒)), and ΘK = (C, T,Σp, s0, abox ,⇒p). To prove the lemma,
we show that, for every state 〈A′,m′〉 s.t. 〈A,m〉 ⇒ 〈A′,m′〉, there exists a state
〈A′p,m′p〉 and a bijection h′ s.t.: 1. 〈Ap,mp〉 ⇒p 〈A′p,m′p〉; 2. h′ extends h; 3. A′p = h′(A′);
4. m′p = h′(m′). To show the claim, we have to separately discuss the case in which
State(temp) 6∈ A, and the case in which State(temp) ∈ A. The first case is equivalent for
Υb
K and Υc

K, whereas the second case is different, since the two semantics diverge when it
comes to the repair step (b-KABs nondeterministically produce one among the possible
repairs, while c-KABs construct a unique repair corresponding to the intersection of
possible repairs).

27

Base case: trivial, because the transition system and its pruning start from the same
intial state 〈A0, ∅〉.
Case 1 (action step): State(temp) 6∈ A. First of all, we observe that temp is a
distinguished constant of C0, hence h(rep) = rep. Since A ≡h Ap, State(temp) 6∈ Ap. The
claim can be then proven exactly in the same way as done for Lemma B.1.1, noticing
however that each ABox A′ s.t. A ⇒ A′ contains State(temp), making the induction
hypothesis for case 1 inapplicable, and the one for case 2 applicable.

Case 2 (repair step) - bold semantics: State(temp) ∈ A. By hypothesis, Ap = h(A),
and since h(rep), State(temp) ∈ Ap as well. Notice that h is syntactically applied over
the ABoxes A and Ap without involving the TBox T , and therefore it can be applied also
when such ABoxes are T -inconsistent. On the one hand, by construction of the transition
system under the bold repair semantics, we therefore know that:

1. for every s′ s.t. 〈A,m〉 ⇒ s′, we have s′ = 〈A′,m〉, with A′ ∈ rep(A −
{State(temp)}, T);

2. for every s′p s.t. 〈Ap,mp〉 ⇒p s′p, we have s′p = 〈A′p,mp〉 = 〈A′p, h(m)〉, with
A′p ∈ rep(Ap − {State(temp)}, T).

On the other hand, since Ap = h(A), from Lemma C.0.3 we get that for every A′′ ∈
rep(A− {State(temp)}, T), h(A′′) ∈ rep(Ap − {State(temp)}, T). We therefore obtain
that, for every state 〈A′,m〉 s.t. 〈A,m〉 ⇒ 〈A′,m〉, we have 〈Ap,mp〉 ⇒p 〈h(A′),mp〉 =
〈h(A′), h(m)〉.

Finally, notice that, by construction A′ and A′p do not contain State(temp). The claim
is therefore proven by inductively applying Case 1 over A′, A′p, and h.

The other direction can be proven in the symmetric way.

Case 2 (repair step) - certain semantics: State(temp) ∈ A. By hypothesis, Ap =
h(A), and since h(rep), State(temp) ∈ Ap as well. Notice that h is syntactically applied
over the ABoxes A and Ap without involving the TBox T , and therefore it can be applied
also when such ABoxes are T -inconsistent. On the one hand, by construction of the
transition system under the certain repair semantics, we therefore know that:

1. there exists exactly one s′ = 〈A′,m〉 s.t. 〈A,m〉 ⇒ s′, where A′ =⋂
Ar∈rep(A−{State(temp)},T)A

r;

2. there exists exactly one s′p = 〈A′p,mp〉 = 〈A′p, h(m)〉 s.t. 〈Ap,mp〉 ⇒p s
′
p, where

A′p =
⋂
Ar

p∈rep(Ap−{State(temp)},T)A
r
p.

On the other hand, since Ap = h(A), from Lemma C.0.3 we get that Ar ∈
rep(A− {State(temp)}, T) iff h(Ar) ∈ rep(Ap − {State(temp)}, T). As a consequence,
A′p =

⋂
Ar∈rep(A−{State(temp)},T) h(Ar) = h(

⋂
Ar∈rep(A−{State(temp)},T)A

r) = h(A′). Fi-

nally, notice that, by construction A′ and A′p do not contain State(temp). The claim is
therefore proven by inductively applying Case 1 over A′, A′p, and h.

With Lemma C.1.1 at hand, we can easily reconstruct the proof of Theorem 3.0.4
(given in Section B.1) for b- and c-KABs. Since µLIT

A is a fragment of µLEQL
A , we get the

result.

28

D. KABs under Extended Repair Semantics

D.1. Proof of Theorem 5.2.1

Given an eb-KAB (ec-KAB respectively) K, we introduce the pruning ΘK of the transition
system Υeb

K (Υec
K resp.), as the transition system constructed following the extended bold

(extended certain, resp.) repair semantics, but by relying on the transition relation
p-execK (as defined in Section B.1) in place of execK. To prove ΘK ≈ Υeb

K (ΘK ≈ Υec
K

resp.), one can follow step by step the line of reasoning of Section C.1, taking into
consideration the fact that Viol concept assertions are inserted into the ABoxes produced
by a repair step. It can be easily noticed that such assertions do not introduce any
additional complication. Remember, in fact, that given an ABox A, these assertions are
produced by computing the set viol(A, T), which is in turn produced by issuing a series
of closed first-order queries over A, considered as a database of facts. Consequently, given
two ABoxes A and Ap and a bijection h s.t. Ap = h(A), viol(A, T) = viol(h(A), T) =
viol(Ap, T).

29

E. Weakly Acyclic KABs

Weakly acyclic KABs are inspired by weakly acyclic tuple-generating dependencies in
data exchange [15]. As in data exchange, in our setting weak acyclicity is a property
defined over a dependency graph, constructed from the KAB’s specification. In particular,
the dependency graph captures the transfer of individuals from one state to the next
state, differentiating between the case of copy, and the case of service calls. In fact, the
latter case leads to possibly introduce fresh values into the system. The dependency
graph is defined as a variation of the definitions given in [2] and [1].

Given a KAB K = (T,A0,Γ,Π), we define its dependency graph G = 〈V,E〉 as follows:
1. Nodes are defined starting from T . More specifically, we have one node 〈N, 1〉 ∈ V

for each concept N in T , and two nodes 〈P, 1〉, 〈P, 2〉 ∈ V for every role P in T
(reflecting the fact that roles are binary relations, i.e., have two components).

2. Edges are defined starting from the effect specifications in Γ. We discuss the case
of two concept assertions, but In particular:

a) an ordinary edge 〈N1, 1〉 → 〈N2, 1〉 is contained in E if there exists an action
γ ∈ Γ, an effect specification

[q+] ∧Q− A′

in γ, and a variable or parameter x s.t. N1(x) appears in rew(q+, T) (i.e., in
the perfect rewriting of q+ w.r.t. T), and N2(x) appears in A′ (similarly for
nodes corresponding to role assertions).

b) a special edge 〈N1, 1〉
∗−→ 〈N2, 1〉 is contained in E if there exists an action

γ ∈ Γ, an effect specification

[q+] ∧Q− A′

in γ, and a variable or parameter x s.t. N1(x) appears in rew(q+, T), and
N2(f(. . . , x, . . .)) appears in A′ (similarly for nodes corresponding to role
assertions).

A KAB K is weakly acyclic if its dependency graph has no cycle going through a special
edge.

E.1. Proof of Theorem 6.0.2

To prove the theorem, we resort to the approach discussed in [2] and [1], adapting it so
as to deal with inconsistency. More specifically, the main steps to prove the results are
as follows:

30

1. Given a KAB K, we introduce its consistent approximant Kp and positive dominant
K+, which incrementally simplify K while maintaining the same dependency graph.

2. We show that when K is weakly acyclic, then it is run-bounded.
3. We show that K+ “dominates” Kp under all semantics discussed in the paper, i.e.,

the active domain of the transition system for K is always contained in the active
domain of the transition system for K+.

4. We do the same for K w.r.t. Kp, thus transferring the weak acyclicity property
from K+ to K.

Technically, given a KAB K = (T,A0,Γ,Π), we define the consistent approximant Kp of
K as a KAB = (Tp, A

p
0,Γ

p,Π), where Ap0 and Γp are obtained as follows:
• Ap0 = A0 ∪ {Viol(d) | ∃t ∈ Tn ∪ Tf s.t. d = label(t)}; i.e., Ap0 saturates A0 with all

possible violations of negative inclusion and functionality assertions in T .
• For every action α(p1, . . . , pn) : {e1, . . . , em} ∈ Γ we have α(p1, . . . , pn) :
{ev, e1, . . . , em} ∈ Γp, where ev = Viol(x) {Viol(x)} copies all Viol assertions.

Notice that the TBox of the consistent approximant is constituted by the positive inclusion
assertions of the original TBox.

Starting from the consistent approximant, we define the positive dominant K+ of K as
a KAB = (Tp, A

p
0,Γ

+,Π+), where Γ+ and Π+ are obtained as follows:
• For each action α(p1, . . . , pn) : {e1, . . . , em} ∈ Γp we have α+() : {e+

1 , . . . , e
+
m} ∈ Γ+

where, given ei = [q+
i] ∧Q− A′i, we have e+

i = [q+
i] A′i.

• For each condition-action rule Q 7→ α(p1, . . . , pn) ∈ Π, we have true 7→ α+() ∈ Π+.
It is easy to show that the dependency graphs of K, Kp and K+ coincide, and therefore
K is weakly acyclic iff Kp is weakly acyclic iff K+ is weakly acyclic.

Theorem E.1.1. Given KAB K, if K is weakly acyclic then its positive dominant K+ is
run-bounded.

Proof. By compiling away the TBox of K+ exploiting the first-order rewritability of
DL-LiteA, the obtained KAB exactly corresponds to the notion of positive approximant
defined for relational Data-Centric Dynamic Systems in [2]. The proof is then directly
obtained from the proof of Theorem 4.7 in [2].

To show that Theorem E.1.1 extends to the KAB itself under each of the semantics
considered in this paper, we first introduce the notion of dominance between transition
systems. Technically, a transition system Υ1 is dominated by Υ2 if, for every run τ1

in Υ1 there exists a run τ2 in Υ2 s.t. for all pairs of states τ1(i) and τ2(i), we have
abox (τ1(i)) ⊆ abox (τ2(i)). By definition, we consequently have that if Υ2 is run-bounded,
then Υ1 is run-bounded as well. This shows that, to prove run-boundedness of a
transition system, it is sufficient to prove that such a transition system is dominated by
a run-bounded transition system.

With this machinery at hand, we are now able to prove the following two key lemmas,
which respectively show that for any semantics considered in this paper, the consistent
approximant is dominated by the positive dominant, and dominates the original KAB.

Lemma E.1.2. For any KAB K, we have that:

31

1. Υs
Kp is dominated by Υs

K+;
2. Υb

Kp is dominated by Υb
K+;

3. Υc
Kp is dominated by Υc

K+;
4. Υeb

Kp is dominated by Υeb
K+;

5. Υec
Kp is dominated by Υec

K+.

Proof. We discuss claim 1 and claims 2-5 separately.

Each claim can be obtained by proving the following stronger claim: for every run τ in
Υs
Kp (resp., Υb

Kp , Υc
Kp , Υeb

Kp , Υec
Kp), there exists a run τ+ in Υs

K+ (resp., Υb
K+ , Υc

K+ , Υeb
K+ ,

Υec
K+) s.t. for all pairs of state τ(i) = 〈Ai,mi〉 and τ+(i) = 〈A+

i ,m
+
i 〉, we have:

1. Ai ⊆ A+
i ;

2. m+
i extends mi;

3. for the mappings mentioned in m+
i but not in mi, m

+
i “agrees” with the maps

contained in the suffix of τ(i), i.e.,

m+
i |Ci = (

⋃
j>i

mj)|Ci

where Ci = dom(m+
i) ∩

⋃
j>i dom(mj).

Claim 1. Thanks to the first-order rewritability of DL-LiteA, Kp and K+ can be
correspondingly represented as a Data-Centric Dynamic System in the sense of [2]. The
proof is then directly obtained from the proof of Lemma 4.1 in [2].

Claim 2-5. The claims can be easily shown by observing that Kp and K+ never
produce an ABox that is Tp-inconsistent, since they only consider positive inclusion
assertions. Consequently, under each of the repair semantics, the repair service does
not affect the current ABox: it simply generates a unique successor that contains the
same ABox and service call map produced by the previous action step. This shows that
Υb
Kp = Υc

Kp = Υeb
Kp = Υec

Kp and that Υb
K+ = Υc

K+ = Υeb
K+ = Υec

K+ . To get the claims, given
the current state 〈A,m〉 in Υb

Kp , we specifically discuss the case in which State(temp) 6∈ A,
and the case in which State(temp) ∈ A:
(base case) Trivial, because the initial states of Υb

Kp and Υb
K+ coincide (they are both

equal to 〈Ap0, ∅〉).
(case 1 - action step) Since it cannot be the case that the state produced after an action

step is Tp-inconsistent, then the proof exactly follows the one for Claim 1.
(case 2 - repair step) Consider τ(i) = 〈A,m〉 and τ+(i) = 〈A+,m+〉 s.t.:

1. State(temp) ∈ A and State(temp) ∈ A+; 2. A and A+ satisfy condition 1;
3. m and m+ satisfy conditions 2 and 3. Since A and A+ are Tp-consistent, then
there is a unique successor 〈A − {State(temp)},m〉 of τ(i) in Υb

Kp , and a unique
successor 〈A+ − {State(temp)},m+〉 of τ+(i) in Υb

K+ . It is trivial to see that these
successors satisfy the three conditions of the claim above.

32

Lemma E.1.3. For any KAB K, we have that:
1. Υs

K is dominated by Υs
Kp;

2. Υb
K is dominated by Υb

Kp;
3. Υc

K is dominated by Υc
Kp;

4. Υeb
K is dominated by Υeb

Kp;
5. Υec

K is dominated by Υec
Kp.

Proof. We discuss each claim separately, by referring to the three inductive conditions
defined in the stronger claim of the proof of Lemma E.1.2.

Case 1. Trivial, because Υs
K is a fragment of Υs

Kp : it does not contain the portions of
Υs
Kp that are generated starting from a T -inconsistent (but always Tp-consistent) ABox.

Case 2. The base case is trivial, because the initial state of Υb
K is 〈A0, ∅〉, the initial

state of Υb
Kp is 〈Ap0, ∅〉, and by construction A0 ⊆ Ap0.

The inductive case for an action step can be proven exactly in the same way discussed
in the proof of Lemma E.1.2 - Claim 1.

We then focus on the inductive case for a repair step. Consider τ(i) = 〈A,m〉 in Υb
K

and τp(i) = 〈Ap,mp〉 in Υb
Kp , s.t. conditions 1, 2 and 3 hold. By construction, we know

that:
• every successor of 〈A,m〉 in Υb

K has the form 〈A′,m〉, where A′ ∈ rep(A −
State(temp), T);
• 〈Ap,mp〉 has a unique successor 〈Ap − {State(temp)},mp〉 in Υb

Kp .
Since the service call maps do not change, the successors continue to obey to conditions
2 and 3. Furthermore, by definition of rep(), we know that A′ ⊆ A and, by hypothesis,
that A ⊆ Ap. Consequently, A′ ⊆ Ap, and therefore also condition 1 is satisfied.

Case 3. The base case and the inductive case for an action step are as in Case 2. We
then focus on the inductive case for a repair step. Consider τ(i) = 〈A,m〉 in Υb

K and
τp(i) = 〈Ap,mp〉 in Υb

Kp , s.t. conditions 1, 2 and 3 hold. By construction, we know that:
• 〈A,m〉 has a unique successor 〈A′,m〉 in Υb

K, where A′ =⋂
Ar∈rep(A−{State(temp)},T)A

r;

• 〈Ap,mp〉 has a unique successor 〈Ap − {State(temp)},mp〉 in Υb
Kp .

Since the service call maps do not change, the successors continue to obey to conditions
2 and 3. Furthermore, by definition we have A′ ⊆ A and, by hypothesis, we know that
A ⊆ Ap. Consequently, A′ ⊆ Ap, and therefore also condition 1 is satisfied.

Case 4. This case is directly obtained from Case 2, and from the observation that, by
construction, each ABox of the consistent approximant contains all the possible Viol
assertions, since they are asserted in the initial state, and copied by means of a specific
effect contained in each of its actions. Therefore, after a repair step, it is guaranteed that
the ABox obtained in Υeb

K is a subset of the corresponding ABox in Υeb
Kp .

Case 5. This case is directly obtained from Case 3 and the observation done for Case 4.

The proof of Theorem 4.2.1 is finally obtained by combining Theorem E.1.1 and the
composition of Lemma E.1.3 with Lemma E.1.2, thanks to transitivity of domination.

33

F. KABs with Consistent Query Answering

As mentioned in the conclusion of the paper, an orthogonal approach to manage incon-
sistency would be to make the KAB itself inconsistency-tolerant. More specifically, we
can conceive a KAB that admits inconsistent ABoxes, and that replaces the standard
query answering service with an inconsistency-tolerant querying service, able to extract
meaningful answers even in presence of inconsistent information.

In the following, we rely for this purpose on the standard notion of consistent query
answering in databases [3], which has been extended to the knowledge base setting in [18].
More specifically, we introduce the following query answering service, which corresponds
to the notion of AR-consistent entailment in [18] (Definition 3).

Given an UCQ q, the consistent-query answer to q over (T,A) is the set cqa (q, T,A) of
substitutions σ of the free variables of q with constants in adom(A) s.t., for every repair
Ar ∈ rep(A, T), qσ evaluates to true in every model of (T,Ar). Observe that, when A is
T -consistent, the consistent-query answers coincide with the certain answers.

Like for certain answers, we extend the notion of consistent-query answer to ECQ
as follows: given an ECQ Q, the consistent-query answer to Q over (T,A), is the set
cqa(Q,T,A) of tuples of constants in adom(A) defined by composing the consistent-
query answers cqa (q, T,A) of UCQs q through first-order constructs, and interpreting
existential variables as ranging over adom(A).

F.1. Inconsistency-tolerant KABs

We introduce the inconsistency-tolerant semantics for KABs as the variation of the
standard semantics where:
• all queries are answered using consistent-query answering instead of certain answers

(i.e., by replacing every ans(Q,T,A) with cqa(Q,T,A));
• an action with parameters is applied even if the resulting ABox is T -inconsistent

(in fact, consistent-query answering makes it possible to query such an inconsistent
ABox in a meaningful way).

We call it-KAB a KAB interpreted under the inconsistency-tolerant semantics. Given an
it-KAB K, we denote with Υit

K the transition system describing its execution semantics.

In order to specify temporal/dynamic properties over it-KABs, also the µLEQL
A logic

must be adapted, making it able to query even T -inconsistent ABoxes in a meaningful
way. In particular, we introduce the logic µLCQA

A that is syntactically equivalent to

µLEQL
A , but redefines the semantics of local EQL queries Q as follows:

(Q)Υ
v,V = {s ∈ Σ | cqa(Qv, T, abox (s)) = true}

34

F.2. Verification of Inconsistency-Tolerant KABs

In this Section, we show that the decidability results presented for the repair semantics
seamlessly apply to it-KABs as well.

Lemma F.2.1. Consider two knowledge bases (T,A1) and (T,A2), s.t. there exists a
bijection h with A2 = h(A1). For every EQL query q, we have 〈d1, . . . , dn〉 ∈ cqa(q, T,A1)
iff 〈h(d1), . . . , h(dn)〉 ∈ cqa(h(q), T, h(A1)).

Proof. This result is a direct consequence of the combination of Lemmas A.0.3 and C.0.3.

Theorem F.2.2. Verification of µLCQA
A properties over run-bounded it-KABs is decid-

able.

Proof. By inspecting the proofs of Theorem 3.0.4 (given in Appendix B.1), we observe
that the possibility of constructing a faithful finite-state abstraction for a run-bounded
KAB depends on the fact that its execution semantics produce bisimilar runs starting
from isomorphic states. This key property, in turn, relies on the fact that the query
answering service does not distinguish between isomorphic states. Since this holds for
consistent-query answers as well (see Lemma F.2.1), we can follow, step-by-step, the
same proof given in Appendix B.1.

Theorem F.2.3. Given a weakly acyclic KAB K, we have that Υit
K is run-bounded.

Proof. Consider the consistent approximant Kp of K. From Lemma E.1.2, we know that
Υs
Kp is dominated by Υs

K+ . By inspecting the proof of this claim, which in turn refers to
the proof of Lemma 4.1 in [2], we know that this is the case because, state by state, the
answers extracted by Kp are contained in the ones extracted by K+.

We now observe that, by definition, given a TBox T , an ABox A and an EQL
query Q, cqa(Q,T,A) ⊆ cqa(Q,Tp, A) = ans(Q,Tp, A). The equality cqa(Q,Tp, A) =
ans(Q,Tp, A) holds because every ABox is consistent with Tp, and the only repair of a
consistent ABox is the ABox itself.

Consequently, we can apply the same line of reasoning used in the proof of Lemma
4.1 in [2], showing that Υit

K is dominated by Υs
Kp . By applying Lemma E.1.2 and

transitivity of domination, this in turn implies that Υit
K is dominated by Υs

K+ . By
recalling Theorem E.1.1 we finally get the result.

35

	Introduction
	Preliminaries
	DL-LiteA Knowledge Bases
	Knowledge and Action Bases

	Verification of Standard KABs
	Repair Semantics for KABs
	Bold and Certain Repair Transition Systems
	Verification Under Repair Semantics

	Extended Repair Semantic for KABs
	Extended Repair Transition System
	Verification Under Extended Repair Semantics
	From Standard to Extended Repair KABs

	Weakly Acyclic KABs
	Conclusion
	Bisimulation and Invariance
	Standard KABs
	Proof of Theorem 3.0.4

	KABs Under Repair Semantics
	Proof of Theorem 4.2.1

	KABs under Extended Repair Semantics
	Proof of Theorem 5.2.1

	Weakly Acyclic KABs
	Proof of Theorem 6.0.2

	KABs with Consistent Query Answering
	Inconsistency-tolerant KABs
	Verification of Inconsistency-Tolerant KABs

